SAINT+

knowledge tracing Jan 18, 2022

论文地址:SAINT+: Integrating Temporal Features for EdNet Correctness Prediction

Introduction

本文是 [[SAINT]] 的升级版, 在其基础上增加了时间特征,在 EdNet 取得了当前的SOTA。

Details

核心介绍时间信息的编码

Temporal Feature Embeddings

  • Elapsed Time: Elapsed time is an amount of time that a student spent on solving a given exercise. 提出两种编码的方式
    • continuous embedding:a latent embedding vector for an elapsed time $et$ is computed as $v_{\text {et }}=\text { et } \cdot w_{\text {elapsed_time}}$, where $w_{\text {elapsed_time}}$ a single learnable vector.
    • categorical embedding: unique latent vectors are assigned to each integer seconds. We set the maximum elapsed time as 300 seconds and any time more than that is capped off to 300 seconds.
  • Lag Time : Lag time is the time gap between interactions.

模型整体的架构如下

把时间特征的 embedding 直接加到输入中即可。

Result

时间特征的分布

实验结果如下,ACC 和 AUC 均提升1个点左右

实验设置的关注的几点

  • We pick the weight with the best validation AUC and evaluate them on the test set。
  • SAINT+ and SAINT 给定了具体参数。
  • 其它的 baselines,利用超参搜索,报告在test上最好的结果(the best results are reported on the test dataset)。

消融实验

Conclusion

本文提供了加入时间特征方法,这点值得借鉴,关于实验部分论文也写的很清晰,值得一读。

References

Tags

TabChen

追寻自我的小孩

Great! You've successfully subscribed.
Great! Next, complete checkout for full access.
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.