ghost markdown 数学公式

Inline equation: $equation$

Inline equation: $equation$

Operators

$x + y$

  • $x + y$

$x - y$

  • $x - y$

$x \times y$

  • $x \times y$

$x \div y$

  • $x \div y$

$\dfrac{x}{y}$

  • $\dfrac{x}{y}$

$\sqrt{x}$

  • $\sqrt{x}$

Symbols

$\pi \approx 3.14159$

  • $\pi \approx 3.14159$

$\pm 0.2$

  • $\pm 0.2$

$\dfrac{0}{1} \neq \infty$

  • $\dfrac{0}{1} \neq \infty$

$0 < x < 1$

  • $0 < x < 1$

$0 \leq x \leq 1$

  • $0 \leq x \leq 1$

$x \geq 10$

  • $x \geq 10$

$\forall \, x \in (1,2)$

  • $\forall , x \in (1,2)$

$\exists \, x \notin [0,1]$

  • $\exists , x \notin [0,1]$

$A \subset B$

  • $A \subset B$

$A \subseteq B$

  • $A \subseteq B$

$A \cup B$

  • $A \cup B$

$A \cap B$

  • $A \cap B$

$X \implies Y$

  • $X \implies Y$

$X \impliedby Y$

  • $X \impliedby Y$

$a \to b$

  • $a \to b$

$a \longrightarrow b$

  • $a \longrightarrow b$

$a \Rightarrow b$

  • $a \Rightarrow b$

$a \Longrightarrow b$

  • $a \Longrightarrow b$

$a \propto b$

  • $a \propto b$

$\bar a$

  • $\bar a$

$\tilde a$

  • $\tilde a$

$\breve a$

  • $\breve a$

$\hat a$

  • $\hat a$

$a^ \prime$

  • $a^ \prime$

$a^ \dagger$

  • $a^ \dagger$

$a^ \ast$

  • $a^ \ast$

$a^ \star$

  • $a^ \star$

$\mathcal A$

  • $\mathcal A$

$\mathrm a$

  • $\mathrm a$

$\cdots$

  • $\cdots$

$\vdots$

  • $\vdots$

$\#$

  • $#$

$\$$

  • $$$

$\%$

  • $%$

$\&$

  • $&$

$\{ \}$

  • ${ }$

$\_$

  • $_$

Space

  • Horizontal space: \quad
  • Large horizontal space: \qquad
  • Small space: \,
  • Medium space: \:
  • Large space: \;
  • Negative space: \!

start a new line \\

$$ \begin{align} A \\ B \end{align} $$
<div>
$$
\begin{align}
A \\ B 
\end{align}
$$
</div>

Greek alphabets

Small Letter Capital Letter Alternative
$\alpha$ \alpha A A
$\beta$ \beta B B
$\gamma$ \gamma Γ \Gamma
$\delta$ \delta Δ \Delta
$\epsilon$ \epsilon E E ε \varepsilon
$\zeta$ \zeta Z Z
$\eta$ \eta H H
$\theta$ \theta Θ \Theta ϑ \vartheta
$\zeta$ \zeta I I
$\kappa$ \kappa K K ϰ \varkappa
$\lambda$ \lambda Λ \Lambda
$\mu$ \mu M M
$\nu$ \nu N N
$\xi$ \xi Ξ \Xi
$\omicron$ \omicron O O
$\pi$ \pi Π \Pi ϖ \varpi
$\rho$ \rho P P ϱ \varrho
$\sigma$ \sigma Σ \Sigma ς \varsigma
$\tau$ \tau T T
$\upsilon$ \upsilon Υ \Upsilon
$\phi$ \phi Φ \Phi φ \varphi
$\chi$ \chi X X
$\psi$ \psi Ψ \Psi
$\omega$ \omega Ω \Omega

Equations

$$\mathbb{N} = { a \in \mathbb{Z} : a > 0 }$$

$$\mathbb{N} = \{ a \in \mathbb{Z} : a > 0 \}$$

$$\forall ; x \in X \quad \exists ; y \leq \epsilon$$

$$\forall \; x \in X \quad \exists \; y \leq \epsilon$$

$$\color{blue}{X \sim Normal ; (\mu,\sigma^2)}$$

$$\color{blue}{X \sim Normal \; (\mu,\sigma^2)}$$

$$P \left( A=2 , \middle| , \dfrac{A^2}{B}>4 \right)$$

$$P \left( A=2 \, \middle| \, \dfrac{A^2}{B}>4 \right)$$

$$f(x) = x^2 - x^\frac{1}{\pi}$$

$$f(x) = x^2 - x^\frac{1}{\pi}$$

$$f(X,n) = X_n + X_{n-1}$$

$$f(X,n) = X_n + X_{n-1}$$

$$f(x) = \sqrt[3]{2x} + \sqrt{x-2}$$

$$f(x) = \sqrt[3]{2x} + \sqrt{x-2}$$

$$\mathrm{e} = \sum_{n=0}^{\infty} \dfrac{1}{n!}$$

$$\mathrm{e} = \sum_{n=0}^{\infty} \dfrac{1}{n!}$$

$$\prod_{i=1}^{n} x_i - 1$$

$$\prod_{i=1}^{n} x_i - 1$$

$$\lim_{x \to 0^+} \dfrac{1}{x} = \infty$$

$$\lim_{x \to 0^+} \dfrac{1}{x} = \infty$$

$$\int_a^b y : \mathrm{d}x$$

$$\int_a^b y \: \mathrm{d}x$$

$$\log_a b = 1$$

$$\log_a b = 1$$

$$\max(S) = \max_{i:S_i \in S} S_i$$

$$\max(S) = \max_{i:S_i \in S} S_i$$

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}$$

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}$$

$$\text{$\dfrac{b}{a+b}=3, :$ therefore we can set $: a=6$}$$

$$\text{$\dfrac{b}{a+b}=3, \:$ therefore we can set $\: a=6$}$$

Functions

$$ f(x)= \begin{cases} 1/d_{ij} & \quad \text{when $d_{ij} \leq 160$}\\ 0 & \quad \text{otherwise} \end{cases} $$
<div>
$$
f(x)=
\begin{cases}
1/d_{ij} & \quad \text{when $d_{ij} \leq 160$}\\ 
0 & \quad \text{otherwise}
\end{cases}
$$
</div>

Matrices

$$ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} $$
<div>
$$
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
$$
</div>
$$ M = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & 0 \\[0.3em] \frac{5}{6} & 0 & \frac{1}{6} \\[0.3em] 0 & \frac{5}{6} & \frac{1}{6} \end{bmatrix} $$
<div>
$$
M = 
\begin{bmatrix}
\frac{5}{6} & \frac{1}{6} & 0 \\[0.3em]
\frac{5}{6} & 0 & \frac{1}{6} \\[0.3em]
0 & \frac{5}{6} & \frac{1}{6}
\end{bmatrix}
$$
</div>
$$ M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $$
<div>
$$ 
M =
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
$$
</div>
$$ M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$
<div>
$$ 
M =
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
$$
</div>
$$ A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} $$
<div>
$$
A_{m,n} = 
\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n} 
\end{pmatrix}
$$
</div>

参考