Photo by Dan-Cristian Pădureț / Unsplash

ghost markdown 数学公式

Dec 19, 2021
Inline equation: $equation$

Inline equation: $equation$

Operators

$x + y$

  • $x + y$

$x - y$

  • $x - y$

$x \times y$

  • $x \times y$

$x \div y$

  • $x \div y$

$\dfrac{x}{y}$

  • $\dfrac{x}{y}$

$\sqrt{x}$

  • $\sqrt{x}$

Symbols

$\pi \approx 3.14159$

  • $\pi \approx 3.14159$

$\pm 0.2$

  • $\pm 0.2$

$\dfrac{0}{1} \neq \infty$

  • $\dfrac{0}{1} \neq \infty$

$0 < x < 1$

  • $0 < x < 1$

$0 \leq x \leq 1$

  • $0 \leq x \leq 1$

$x \geq 10$

  • $x \geq 10$

$\forall \, x \in (1,2)$

  • $\forall , x \in (1,2)$

$\exists \, x \notin [0,1]$

  • $\exists , x \notin [0,1]$

$A \subset B$

  • $A \subset B$

$A \subseteq B$

  • $A \subseteq B$

$A \cup B$

  • $A \cup B$

$A \cap B$

  • $A \cap B$

$X \implies Y$

  • $X \implies Y$

$X \impliedby Y$

  • $X \impliedby Y$

$a \to b$

  • $a \to b$

$a \longrightarrow b$

  • $a \longrightarrow b$

$a \Rightarrow b$

  • $a \Rightarrow b$

$a \Longrightarrow b$

  • $a \Longrightarrow b$

$a \propto b$

  • $a \propto b$

$\bar a$

  • $\bar a$

$\tilde a$

  • $\tilde a$

$\breve a$

  • $\breve a$

$\hat a$

  • $\hat a$

$a^ \prime$

  • $a^ \prime$

$a^ \dagger$

  • $a^ \dagger$

$a^ \ast$

  • $a^ \ast$

$a^ \star$

  • $a^ \star$

$\mathcal A$

  • $\mathcal A$

$\mathrm a$

  • $\mathrm a$

$\cdots$

  • $\cdots$

$\vdots$

  • $\vdots$

$\#$

  • $#$

$\$$

  • $$$

$\%$

  • $%$

$\&$

  • $&$

$\{ \}$

  • ${ }$

$\_$

  • $_$

Space

  • Horizontal space: \quad
  • Large horizontal space: \qquad
  • Small space: \,
  • Medium space: \:
  • Large space: \;
  • Negative space: \!

start a new line \\

$$ \begin{align} A \\ B \end{align} $$
<div>
$$
\begin{align}
A \\ B 
\end{align}
$$
</div>

Greek alphabets

Small Letter Capital Letter Alternative
$\alpha$ \alpha A A
$\beta$ \beta B B
$\gamma$ \gamma Γ \Gamma
$\delta$ \delta Δ \Delta
$\epsilon$ \epsilon E E ε \varepsilon
$\zeta$ \zeta Z Z
$\eta$ \eta H H
$\theta$ \theta Θ \Theta ϑ \vartheta
$\zeta$ \zeta I I
$\kappa$ \kappa K K ϰ \varkappa
$\lambda$ \lambda Λ \Lambda
$\mu$ \mu M M
$\nu$ \nu N N
$\xi$ \xi Ξ \Xi
$\omicron$ \omicron O O
$\pi$ \pi Π \Pi ϖ \varpi
$\rho$ \rho P P ϱ \varrho
$\sigma$ \sigma Σ \Sigma ς \varsigma
$\tau$ \tau T T
$\upsilon$ \upsilon Υ \Upsilon
$\phi$ \phi Φ \Phi φ \varphi
$\chi$ \chi X X
$\psi$ \psi Ψ \Psi
$\omega$ \omega Ω \Omega

Equations

$$\mathbb{N} = { a \in \mathbb{Z} : a > 0 }$$

$$\mathbb{N} = \{ a \in \mathbb{Z} : a > 0 \}$$

$$\forall ; x \in X \quad \exists ; y \leq \epsilon$$

$$\forall \; x \in X \quad \exists \; y \leq \epsilon$$

$$\color{blue}{X \sim Normal ; (\mu,\sigma^2)}$$

$$\color{blue}{X \sim Normal \; (\mu,\sigma^2)}$$

$$P \left( A=2 , \middle| , \dfrac{A^2}{B}>4 \right)$$

$$P \left( A=2 \, \middle| \, \dfrac{A^2}{B}>4 \right)$$

$$f(x) = x^2 - x^\frac{1}{\pi}$$

$$f(x) = x^2 - x^\frac{1}{\pi}$$

$$f(X,n) = X_n + X_{n-1}$$

$$f(X,n) = X_n + X_{n-1}$$

$$f(x) = \sqrt[3]{2x} + \sqrt{x-2}$$

$$f(x) = \sqrt[3]{2x} + \sqrt{x-2}$$

$$\mathrm{e} = \sum_{n=0}^{\infty} \dfrac{1}{n!}$$

$$\mathrm{e} = \sum_{n=0}^{\infty} \dfrac{1}{n!}$$

$$\prod_{i=1}^{n} x_i - 1$$

$$\prod_{i=1}^{n} x_i - 1$$

$$\lim_{x \to 0^+} \dfrac{1}{x} = \infty$$

$$\lim_{x \to 0^+} \dfrac{1}{x} = \infty$$

$$\int_a^b y : \mathrm{d}x$$

$$\int_a^b y \: \mathrm{d}x$$

$$\log_a b = 1$$

$$\log_a b = 1$$

$$\max(S) = \max_{i:S_i \in S} S_i$$

$$\max(S) = \max_{i:S_i \in S} S_i$$

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}$$

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}$$

$$\text{$\dfrac{b}{a+b}=3, :$ therefore we can set $: a=6$}$$

$$\text{$\dfrac{b}{a+b}=3, \:$ therefore we can set $\: a=6$}$$

Functions

$$ f(x)= \begin{cases} 1/d_{ij} & \quad \text{when $d_{ij} \leq 160$}\\ 0 & \quad \text{otherwise} \end{cases} $$
<div>
$$
f(x)=
\begin{cases}
1/d_{ij} & \quad \text{when $d_{ij} \leq 160$}\\ 
0 & \quad \text{otherwise}
\end{cases}
$$
</div>

Matrices

$$ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} $$
<div>
$$
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
$$
</div>
$$ M = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & 0 \\[0.3em] \frac{5}{6} & 0 & \frac{1}{6} \\[0.3em] 0 & \frac{5}{6} & \frac{1}{6} \end{bmatrix} $$
<div>
$$
M = 
\begin{bmatrix}
\frac{5}{6} & \frac{1}{6} & 0 \\[0.3em]
\frac{5}{6} & 0 & \frac{1}{6} \\[0.3em]
0 & \frac{5}{6} & \frac{1}{6}
\end{bmatrix}
$$
</div>
$$ M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $$
<div>
$$ 
M =
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
$$
</div>
$$ M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$
<div>
$$ 
M =
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
$$
</div>
$$ A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} $$
<div>
$$
A_{m,n} = 
\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n} 
\end{pmatrix}
$$
</div>

参考

TabChen

追寻自我的小孩

Great! You've successfully subscribed.
Great! Next, complete checkout for full access.
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.